If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+40n+47=0
a = 8; b = 40; c = +47;
Δ = b2-4ac
Δ = 402-4·8·47
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{6}}{2*8}=\frac{-40-4\sqrt{6}}{16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{6}}{2*8}=\frac{-40+4\sqrt{6}}{16} $
| -3/5m=3/7 | | 2x+15+4x-5=x | | -5x+4=5x+54 | | -5x+4=55x+54 | | -3(-7x-4)-7(7-3x)=10+43x | | 2x-30+x+15=x | | 0.25(60)+0.10=0.15(60-x) | | 6=s-9 | | 4(2x-3)^.5=12 | | 3x=8=-37-6x | | 6x+22=16x-28 | | 4x3+-(3x2)/2=0 | | 3x-2=-5x-2 | | b2-8b+14=0 | | -5x+4=52+3x | | 2y-3+5y=99y+1+8y | | t=-16t2+32t+10t | | 10-6n=4n-5n | | 3(x-3(5x))+360=150 | | 10x+4x=22 | | 7x+5=10x-11 | | -14-7x=42 | | 8(3x-2)+10=66 | | 67m+96=89 | | X2+Y2-6x+8Y+20=0 | | 4.7=15.9-7y | | (5x-25)=(3×+25) | | u/2-2.3=-8.7 | | 10=v/15.36+4 | | 3x+4(2x+8)=43 | | (3x-2)+(x+2)=180 | | 24.4=-13.1+3w |